Today we will discuss the power of trigonometrical substitutions.

Let us take the expression

This is a math competition problem. One solution proceeds this way: let . Then as , we can write and .

This is an elementary fact. But what is the reason for doing so?

Now we have . Similarly, . The rest of the solution can be seen here. It mainly uses identities of the form to remove the root sign.

What if we did not use trigonometric substitutions? What is the utility of this method?

We will refer to this solution, and try to determine whether we’d have been able to solve the problem, using the same steps, but not using trigonometrical substitutions.

As one might see here, our main aim is to remove the square root radicals, and forming squares becomes much easier when you have trigonometrical expressions. Every trigonometrical expression has a counterpart in a complex algebraic expression. It is only out of sheer habit that we’re more comfortable with trigonometrical expressions and their properties.

### Like this:

Like Loading...

*Related*