A little something about the two equivalent definitions of compactness in a metric space

The two statements are equivalent in a metric space:

1. Every infinite sequence has a convergent subsequence. In other words, there is an accumulation point for every infinite sequence.

2. The metric space is convergent.

Proving (2) from (1) follows the standard practice of deducing that any open set containing the accumulation point contains all but finite points in the sequence, and the remaining finite points can be covered by a finite number of open sets.

I used to wonder what if there are infinite accumulation points? Can there be infinite sequences, each with infinite subsequences converging to infinite separate points? The answer is yes. But we notice that using the above argument is not enough.

However, the problem soon gets resolved if we notice that the set of all limit points of a sequence (the limit points of all subsequences) is closed! See if you can manage to figure out why this necessarily produces an open covering. If you’re unable to, leave a comment. I will include the full solution.

Published by ayushkhaitan3437

Hello! My name is Ayush Khaitan, and I'm a graduate student in Mathematics. I am always excited about talking to people about their research. Please please set up a meeting with me if you feel that I might have an interesting perspective to offer- https://calendly.com/ayushkhaitan/meeting-with-ayush

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: