Puiseux series- This field is denoted by . Note that we have a double brace “[[ ]]” instead of “[]”. This implies that we have infinite series instead of finite ones (which would be polynomials). The Puiseux laurent series is denoted as . This means that is also allowed to have negative powers. Now , which just means that contains all rational powers of now, and not just integral powers, as in the Laurent series. We seem to be generalizing in every successive step.

Now we define a valuation: , for . So what we’ve essentially done is that we’ve written all rational powers (including integral ones) as fractions with denominator . Clearly, amongst all the denominators in the rational powers of , has to be the largest denominator.

If the Puiseux series converges, then we have

Why is that? It seems to me that would give us the sum of all rational powers of , which could possibly be infinite. Then why do we just get the lowest one?

Now for , set Trop to be . Take for example. One should think about this variety as instead, where and are power series in (with rational powers). Then there are three possibilities:

i) and .

ii) and

iii) .

These cases can be easily deduced to contain all possibilities. For instance, if , then too. This is because implies that has negative powers of . This implies that too has to have negative powers of , as . When one of them contains strictly positive powers, the other has to contain and no negative powers of , which implies that if , then .

### Like this:

Like Loading...

*Related*