Math Olympiads #1

I’ve been obsessed with Math Olympiads and other kinds of competitive math for a loong time now. Although I should be doing more serious mathematics now that can actually get me a job, I shall ignore good sense and start my series of posts on Math Olympiad problems!

The first problem that I want to write about is a relatively easy one from IMO (International Math Olympiad) 1974. I think it was a long-listed problem, and didn’t actually make it to the test. It asks to prove the fact that

\displaystyle 343|2^{147}-1

(that 343 divides 2^{147}-1)

The important thing in this problem is to figure out that 343=7^3 and 147=3.7^2. Hence, we’re being asked to prove that 7^3|2^{3.7^2}-1.

We have the following theorem for reference: If a and b are co-prime, then a^{\phi(b)}\equiv 1\pmod b, where \phi(b) is the number of natural numbers that are co-prime with b. Fermat’s Little Theorem is a special case of this.

Now on to the calculations and number crunching. We have fleshed out the main idea that we’ll use to attack the problem. We can see that \phi(7^3)=7^3-7^3/7=6.7^2. Hence, as 2 is co-prime with 7^3, 2^{6.7^2}-1\equiv 0\pmod {7^3}. We can factorize this as (2^{3.7^2}+1)(2^{3.7^2}-1)\equiv 0\pmod {7^3}. Now we have to prove that 7^3 does not have any factors in common with 2^{3.7^2}+1. As 2^3\equiv 1\pmod 7, 2^{3.7^2}\equiv 1\pmod 7 too. Hence, 2^{3.7^2}+1\equiv 2\pmod 7. This shows that 2^{3.7^2}+1 does not have any factors in common with 7^3, and leads us to conclude that 7^3|(2^{3.7^2}-1), or 343|2^{147}-1. Hence proved.

I realize that the formatting is pretty spotty. I shall try and re-edit this in the near future to make it more readable.

 

Published by ayushkhaitan3437

Hello! My name is Ayush Khaitan, and I'm a graduate student in Mathematics. I am always excited about talking to people about their research. Please please set up a meeting with me if you feel that I might have an interesting perspective to offer- https://calendly.com/ayushkhaitan/meeting-with-ayush

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: