IMO 2019, Problem 1

The International Math Olympiad 2019 had the following question:

Find all functions f:\Bbb{Z}\to \Bbb{Z} such that f(2a)+2f(b)=f(f(a+b)).

The reason that I decided to record this is because I thought I’d made an interesting observation that allowed me to solve the problem in only a couple of steps. However, I later realized that at least one other person has solved the problem the same way.

The right hand side is symmetric in a,b. Clearly, f(f(a+b))=f(f(b+a)). Hence, symmetrizing the left side as well, we get f(2a)+2f(b)=f(2b)+2f(a). This implies that f(2a)-f(2b)=2(f(a)-f(b)). Assuming b=0, we get f(2a)=2f(a)-f(0).

Now use a=x+y and b=0 to show that f(x)-f(0) is linear. This shows us that f(x)=2x-f(0) or f(x)=0 are the only solutions to this question.

Published by ayushkhaitan3437

Hello! My name is Ayush Khaitan, and I'm a graduate student in Mathematics. I am always excited about talking to people about their research. Please please set up a meeting with me if you feel that I might have an interesting perspective to offer- https://calendly.com/ayushkhaitan/meeting-with-ayush

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: